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Abstract—We envision a future where robots are equipped
“out of the box” with a library of general-purpose skills. To
effectively compose these skills into long-horizon plans, a robot
must understand each skill’s preconditions and effects in a form
that supports symbolic reasoning. Such representations should
be human-interpretable so that robots may understand human
commands and humans may understand robot capabilities.
Unfortunately, existing approaches to skill abstraction learning
often require extensive data collection or human intervention,
and typically yield uninterpretable representations. We present
SKILLWRAPPER, the first known active learning approach that
leverages foundation models to learn human-interpretable ab-
stractions of black-box robot skills, producing representations
that are both probabilistically complete and suitable for planning.
Given only RGB image observations before and after skill
execution, our system actively collects data, invents symbolic
predicates, and constructs PDDL-style operators to model the
skills. We present preliminary simulation results demonstrating
that the abstract representations learned by SKILLWRAPPER can
be used to solve previously unseen, long-horizon tasks.

I. INTRODUCTION

In the near future, robots will be deployed from the factory
to the real world, equipped with a set of general-purpose
skills to interact with their environment. However, these
skills could be black boxes that were learned, engineered,
or obtained in unknown ways. As a result, the conditions
under which skills can be used in real-world settings may be
unavailable or environment-dependent, potentially leading to
failure when sequencing skills to solve unseen tasks. Herein
lie two important problems: First, without understanding the
conditions under which each skill can be successfully executed
(i.e., preconditions) and the likely outcomes of execution (i.e.,
effects), a robot may fail to identify task plans that effectively
use its skills. Second, skill preconditions and effects should
be interpretable to everyday users, as they would allow users
to understand the robot’s decision-making process, making it
easier to specify goals or task constraints.

In this paper, we present SKILLWRAPPER, the first known
approach that uses foundation models to autonomously char-
acterize robot skills, emphasizing human-interpretable state
abstractions while guaranteeing probabilistic completeness and
suitability for planning. Our approach assumes a skill-type sig-
nature as input and learns a PDDL-style [11] symbolic model
for each skill. Previous work has extensively explored learning

Corresponding authors: Ziyi Yang ( ziyi_yang1@brown.edu ), Benned
Hedegaard ( benned_hedegaard@brown.edu )

“There are three items Vase, TissueBox, and Bowl, and three
locations Sofa, CoffeeTable, and DiningTable. Their initial
positions are shown as follows. The robot is near the Sofa
initially, and everything is placed stably, and all items can fit
in every location. The goal is to have all items on the Sofa.”

Output Plan
GoTo3(Sofa, CoffeeTable),
PickUp5(Vase, CoffeeTable),
GoTo2(CoffeeTable, Sofa),
DropAt2(Vase, Sofa),
GoTo4(Sofa, DiningTable),
PickUp1(Bowl, DiningTable),
GoTo2(DiningTable, Sofa),
DropAt2(Bowl, Sofa)

Fig. 1: An example multi-modal task specification using natural language and
egocentric visual observations, followed by the corresponding plan found by
planning using the PDDL-style operators learned by SKILLWRAPPER.

symbolic representations of high-level skills [8, 16, 15, 5].
However, these works either assume access to privileged
information (e.g., object poses [15] or extensive human feed-
back [5]) or fail to produce human-interpretable representa-
tions [8]. Although prior work has explored extracting sym-
bols and language directly from demonstrations [4], existing
approaches require significant manual effort to define features
and train specialized classifiers for representation learning.

Hence, to facilitate learning skill abstractions from raw
robot observations while reducing effort from human experts,
we utilize foundation models, such as large language models
(LLMs) and vision-language models (VLMs). Several works
have exploited language models for robot decision-making and
planning [1, 2, 9, 17, 14]. In contrast to these approaches,
our method generates planning operators compatible by design
with task planners, thus benefiting from efficient domain-
independent heuristics [6] and correctness guarantees. This
paper briefly introduces SKILLWRAPPER while highlighting
key insights from our preliminary experiments in simulation.
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Phase 2:
The robot attempts to execute each proposed sequence step-by-step and collects 

execution traces. Upon executing each task, successes or failures may occur.

Phase 4:
Using all candidate predicates, we factorize the symbolic state to construct

grounded skill operator definitions that characterize these skills.

Phase 3:
FM is presented images of positive (success) and negative (failure) cases from execution

traces to generate predicates for characterizing preconditions and effects. 

Phase 1:
A foundation model (FM) proposes robot skill sequences given black-box skill 

metadata and state description for learning operators.

Skill
SequencesFM

Black-box skill Prototypes:
- GoTo(loc_1, loc_2)
- PickUp(obj, loc)
- DropAt(obj, loc)

Prompt
Robot Observation

Skill Metadata

Initial state

1. Go to LivingRoom.
2. Go to CoffeeTable.
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Fig. 2: Overview of SKILLWRAPPER: in (1), given a description of the robot’s environment and metadata about its skills, a foundation model (FM) proposes
skill sequences useful for representation learning. In (2), the robot attempts to execute the proposed sequences, collecting the initial and final state of each
action as images stored in a database. In (3), this database is presented to the FM as contrastive pairs (i.e., success and failure images as positive and negative
examples) from which the FM will invent predicates to describe the symbolic state across all skills. Finally, in (4), the FM is used to infer the abstract states
corresponding to the states before and after each successful execution trace. The resulting abstract transitions are used to construct planning operators.

II. METHOD

Briefly, SKILLWRAPPER (Figure 2) learns an abstract model
for planning with a library of black-box skills by (1) actively
proposing and (2) executing exploratory skill sequences to
collect execution traces, (3) inventing predicates by contrasting
pairs of successful and failed skill executions, and (4) using
these predicates to generate PDDL-style operators compatible
by design with off-the-shelf classical AI planners.

Skill Sequence Proposal: Our system first queries a foun-
dation model to generate skill sequences intended to explore
the symbolic state space in a directed manner.

Predicate Invention: SKILLWRAPPER uses foundation
models to generate interpretable predicates, along with their
semantic meanings as English sentences. Predicate invention
aims to generate predicates that distinguish state features
responsible for successful or unsuccessful skill executions.

Operator Learning by Clustering: Using the collected
dataset of skill execution traces, SKILLWRAPPER evaluates the
truth value of each predicate at every traced state, inducing a
dataset of abstract state transitions. The operator learning algo-
rithm identifies the effects and preconditions of the potentially
multiple subgoal options corresponding to each skill [8].

Planning with Learned Operators: Having “wrapped” the
black-box skills in corresponding learned operators, SKILL-
WRAPPER can solve task planning problems conveniently
specified using natural language and images (Figure 1). To
convert the multi-modal task specification into an initial PDDL
state, the system queries a foundation model to classify
whether each predicate holds given the current state descrip-
tion, in a way similar to existing work [10].

III. EXPERIMENTS

We demonstrate the capabilities of the SKILLWRAPPER sys-
tem using preliminary simulation experiments in the Manip-
ulaThor [7, 3] environment. We prompt GPT-4o [12] with
egocentric observations to evaluate the truth value of each
predicate. For predicate invention and skill sequence pro-
posal, we utilize o1-preview [13]. We provide the simulated
robot with three high-level actions: PickUp(obj, loc),
DropAt(obj, loc), and GoTo(loc1, loc2). These high-
level actions function as black-box skills by executing a
deterministic sequence of low-level motions.

In total, we collected data from five skill sequences consist-
ing of 80 image-based states and 40 transitions, of which 24
skill executions were successful. Given the dataset of environ-
ment transitions and the abstract state space induced by the
invented predicates, SKILLWRAPPER learned ten operators to
model the three high-level skills. Once the system has learned
the human-interpretable predicates and operators, we use a
foundation model to formulate an unseen task planning prob-
lem. We present an example multi-modal task specification
using natural language and images at the top of Figure 1. Given
the learned abstract transition model and the task planning
problem inferred from the above task specification, the task
planner returned the plan shown at the bottom of Figure 1.

IV. CONCLUSION

This paper formulates the problem of actively learning
interpretable, abstract representations of black-box skills. We
propose SKILLWRAPPER as a solution that exploits the
multi-modal reasoning capabilities of foundation models. We
demonstrate our approach using a proof-of-concept example



in a simulated mobile manipulation setting. In ongoing and
future work, we plan to compare our approach to alternative
methods for active relational abstraction learning.
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